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ABSTRACT

S-band radar surveillance scans of precipitating shallow convection are analyzed. The scans are complied

from 52 days of near-continuous measurements in the winter trades of the North Atlantic during the Rain in

Cumulus over the Ocean (RICO) field campaign. After being analyzed and filtered to exclude spurious

returns, the scans are segmented to identify contiguous returns, or echoes. The echo size and reflectivity

statistics are then analyzed. A new normalization method is developed to account for biases associated with

the nonuniformity in the native radar grid. The echo area distribution robustly exhibits power-law scaling up

until sizes of about 10 km2, with a scaling exponent of about 21.1. At larger sizes the scaling behavior breaks

down and varies more markedly across subsamples of the data. Conditional sampling suggests that the scaling

behavior of the larger echoes does, however, approach that of the smaller echoes as echo coverage increases,

which supports the idea of a limiting distribution. Departures from this limiting distribution are argued to

reflect finite size effects, modulated by the presence of a capping inversion whose height and strength varies

across the samples.

1. Introduction

Relaxation events of systems driven by the slow input

of energy can be described by the concept of self-organized

criticality. These events, or bursts, are assumed to be

scale free (i.e., not characterized by any favored scale).

Examples include continental plates releasing their en-

ergy in an earthquake and piles of rice or sand in an

avalanche. The scale-free character of such bursts re-

sults in a power-law relationship between the number

density n of events at some size or intensity a and the size

or intensity:

n(a) } a�B. (1)

The Gutenberg–Richter law, for instance, states that the

probability of an earthquake follows Eq. (1) with a being

the seismic moment, the measure of the released energy

(Gutenberg and Richter 1944).

The scale-free character is expressed by the fact that

the probability of an event of intensity a1 versus an event

of an intensity a2 depends only on the ratio a1/a2, not on

the intensities themselves. The physics of an object or

event that belongs to an ensemble that behaves in a

power-law manner may therefore be expected to hold

true for another object or event of different size, as long

as the two sizes are within the power-law regime. This

can be useful to modeling, as it suggests that every object

or event within the asymptotic regime may be described

similarly.

Recently Peters and collaborators used this framework

to inform their measurements of rain events (Peters

et al. 2002; Peters and Christensen 2002, 2005; Peters

and Neelin 2006). Radiative fluxes destabilize the atmo-

spheric column, which drives a flux of latent and sensible

energy into the atmosphere. The latent energy is stored in

the atmosphere as water vapor up to a point or threshold,

beyond which it has to relax to saturation, and in so doing

the energy is released in the bursts of rain events. Using

a vertically pointing Doppler radar Metek Micro Rain
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Radar Disdrometer (MRR-2), Peters et al. (2002) mea-

sured the size spectrum and fall velocities of hydro-

meteors from which they derive a rain rate. They define

the event intensity as the released water column in

millimeters—that is, the time integral of the rain rate

over a sequence of successive nonzero rain rates. They

found Eq. (1) capable of describing rain events over the

Baltic coast town of Zingst with B equal to 1.36. Mea-

surements in the Basilicata region (southern Italy) from

February 1998 to February 2002 yield a similar result

(Telesca et al. 2004). Similar conclusions can be drawn

to some extent from Tropical Rainfall Measuring Mission

(TRMM) observations over the Amazon (Petersen et al.

2002) and radar and sounding analysis over Kwajalein

Atoll (Holder et al. 2008).

The rain events studied by Peters et al. (2002) and

subsequent collaborators include deep convection and

frontal systems. Our study focuses on rain from shallow

cumuli. The contribution of shallow convection to the

net rainfall is often overlooked. While it is true that,

individually, shallow clouds produce relatively little rain,

they are climatologically common. Hence, their collective

effects can be substantial. Petty (1999) found that 20%

to 40% of the surface nondrizzle precipitation over the

ocean east of Australia was associated with warm cloud

tops (infrared temperature above 273 K); Short and

Nakamura (2000) estimated shallow convection is re-

sponsible for about 20% of the total rainfall over the

tropical oceans.

Does the echo area distribution of shallow convection

fit into the paradigm explored by Peters and collabora-

tors? We explore the relationship between the number

of events and the size of their instantaneous radar

echoes. The radar echoes are measured by a scanning

S-band radar. At these wavelengths larger reflectivities

are proportional to the sixth moment of the droplet spec-

trum and hence are sensitive to the presence of large drops.

Ideally echoes are equivalent to Peters et al.’s scaleless

bursts of the stored energy. In particular, to the extent

that echo area is a good proxy for rain rate (Nuijens et al.

2009; Doneaud et al. 1984), one expects Eq. (1) to be

applicable to an echo field with a denoting area and n

number density.

The advantage of a radar study is that in the S band

large drops that contribute to rainfall are especially ef-

fective scatterers of radiation; echoes have a stronger tie

to precipitation than clouds. Echoes underline many

satellite retrievals of surface rain. However, the remote

sensors making these measurements do not resolve the

smallest echoes or those with insufficient reflectivities.

The footprints of satellite imagery (pixel size of mea-

surement) tend to be larger than the typical horizontal

extent of a great fraction of shallow cumuli. TRMM, for

example, has a sensitivity of about 18 dBZ and a hori-

zontal resolution 4.3 km (Short and Nakamura 2000)

and may not be able to measure a great variety of smaller

convection entities. CloudSat is much more sensitive,

measuring echoes as weak as 230 dBZ, but its footprint

of 2.3 km is still larger than many cumulus clouds (Haynes

and Stephens 2007). Furthermore, CloudSat suffers con-

tamination from surface returns in its near-surface pixels,

which complicates interpretations of its measurement.

Hence, in addition to providing physical insight, char-

acterizations of the echo area distribution from ground-

based sensors provide a basis for filling gaps in the global

record.

In this study we are mostly concerned with establish-

ing the extent to which general or regular features

emerge in the echo statistics. By ‘‘regularity,’’ we refer

to the reoccurrence of recognizable patterns over a

geographical area regardless of the changing environ-

ment over the area. In addition to satisfying our curi-

osity, the establishment of regularity may also provide

observational targets for theory and constraints for

models and simulations. Luo and Liu (2007) and Neggers

et al. (2003) showed that the distributions of clouds

produced by large-eddy simulation (LES) correspond

well with satellite measurements, thus adding credence

to the simulations. By extending our investigation to

radar echoes, we also hope to provide a basis for con-

straining the representation of microphysical processes

in LES, a useful step in an attempt to better understand

age-old questions such as the production of rain by warm

processes.

We address the question of the character and regu-

larity of the echo area distribution by analyzing the ra-

dar echoes collected during the Rain in Cumulus over

the Ocean (RICO) field campaign. Section 2 discusses

the methodology. Section 3 presents the results of our

analysis, emphasizing characteristic features of the size

distribution. Section 4 endeavors to explain why we

think large echoes evince different behavior than small

echoes. Section 5 provides a discussion of our results

along with a summary.

2. Methodology

The RICO field study took place during the months of

November 2004–January 2005 in the vicinity of Antigua

and Barbuda in the northeast trades of the western At-

lantic. The project is more fully summarized in Rauber

et al. (2007) and briefly recapitulated here. The trades

blew from the east-northeast at about 10 m s21, average

sea surface temperatures were near 278C, and a weak

trade wind inversion was often evident near 800 hPa.

RICO operations were centered around the National
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Center for Atmospheric Research (NCAR) SPolKa dual

polarization, dual wavelength (S and K band) radar sys-

tem on Barbuda. The routine scan sequence consisted of

1808 plan position indicator (PPI) volume scans and full

(3608) surveillance scans. In this paper we study the data

based on the surveillance scans. The surveillance scan

are conducted every 20 min, at a fixed elevation of 0.58.

The beamwidth of the radar is 0.98.

Ten consecutive surveillance scans are lumped to-

gether to form independent samples. This is equal to

roughly 200-min sampling interval. Although the auto-

correlation time scale for averaged properties within

each scan is somewhat longer than our sampling in-

terval, this sampling interval is much larger than the

expected lifetime of individual events. Out of fifty-six

days from 1 December to 25 January, two periods are

characterized by heavier rain associated with higher

than usual echo fraction. This quantity is the ratio be-

tween total echo area and the domain area. On average

the echo fraction throughout the campaign is 0.02, but

on those mentioned days, it is as high as 0.1. Higher echo

area is the result of deeper convection. Such periods are

poorly sampled. This fact combined with our underlying

interest in shallow convection motivates us to exclude

these days (13 and 15 December and 9 and 10 January)

from our subsequent analysis. (See Nuijens et al. 2009

for a further discussion of this point.)

a. Preliminary data analysis

The raw data are interpolated onto a regular polar

grid with a diameter of 300 km discretized radially into

984 and azimuthally into 540 pixels. This polar grid is the

native grid of the radar instrument. Although it presents

some difficulties, which will be later discussed, we choose

not to interpolate the data onto a Cartesian grid because

doing so would only introduce methodological issues.

We also note that the 0.58 elevation angle of the sur-

veillance scans that we analyze means that radar beam

probed deeper into the cloud layer at larger distances

from the radar. Possible biases resulting from this prop-

erty of the scan are not investigated here, in part because

such effects are mitigated by the beamwidth being nearly

twice the elevation angle. The interested reader is re-

ferred to Snodgrass et al. (2009) for a further discussion of

these issues.

The azimuthal pixel size du is 2p/540 radians, and the

radial dr is 0.15 km. The data are filtered to exclude

the returns from and over islands, backscattering from

the surface, insignificant echoes, birds, and regions of

predominantly Bragg scattering as described by Nuijens

et al. (2009).

A 7-dBZ threshold is used to distinguish Bragg from

Rayleigh scattering. There is nothing magical about 7 dBZ;

rather, it reflects a conservative attempt to diminish pos-

sible artifacts from Bragg scattering, which, in the S band,

increasingly dominates the signal at smaller reflectivities.

Because small echoes can potentially be dimmer than this

threshold, marking anything below 7 dBZ as background

robs us some of the less reflective signals. Using one day

of data, we also explored the sensitivity of our results to

the specific choice of threshold. Although the distributions

changed slightly—for instance, there were fewer large

echoes for higher thresholds (as one would expect)—

the scaling behavior we explore was not sensitive to the

choice of threshold.

Filtered and thresholded images are then segmented.

The process is to distinguish between different con-

nected pixels and label each as a unique entity. Two

cloudy pixels belong to the same echo if they are im-

mediate neighbors either vertically or horizontally, but

not diagonally. This is called the four-connected method,

detailed in appendix A. An ‘‘echo’’ hereafter is defined as

a four-connected set of reflective pixels.

Our analysis focuses on two macrophysical parame-

ters: echo area and reflectivity. Echo area is measured by

simply adding up the size of every pixel; mathematically,

a 5�
i

a
i
, (2)

with a being the echo area and ai the pixel area, which

varies according to

a
i
5 r

i
dr du, (3)

where ri is the radial distance of the ith pixel from the

radar. Reflectivity Z can be summed in a similar manner

except that zi or reflectivity in mm6 m23 is an addable

quantity unlike Zi, reflectivity in dBZ. Mathematically,

Z 5 10 log�
i

z
i
5 10 log�

i
100.1Z

i . (4)

Three other parameters that occasionally crop up are

the echo fraction f, the number of pixels, and the dis-

tance from the radar. Here f is computed by the sum of

the area of all echoes divided by p 3 (1502 2 302) km2 in

an annular sample volume whose outer radius is the

extent of the radar domain and whose inner radius is

30 km. The reason for excluding echoes within 30 km of

the radar will be discussed in section 2b. The number is

counted in a straightforward manner, and the distance is

the radial position of the center of mass with the effect of

pixels being of different sizes taken into account.

Out of 51 RICO days, about 800 000 echoes are evi-

dent on the surveillance scans. Each day contains roughly

six to seven samples—series of surveillance scans are
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regularly interrupted by PPI scans—so each sample hosts

on average around 3000 signals. A size range is divided

into 100 bins (or size categories), with a width of one bin

being the multiplicity of the previous bin. The bins de-

pend on the maximum and minimum size of interest.

Echoes are sorted according to areas. We count and

report a number of echoes within each bin and then

divide the number by the bin width to get the density.

Echoes’ reflectivities are averaged within each bin.

The number densities and reflectivities are plotted

versus area on a log–log scale. Information from a sam-

ple or even a single day is insufficient to provide reliable

statistics. Data among all samples—312 in total—are

thus combined. We assume the relationships among

parameters are unchanged through the period. This is

not necessarily true, and its failure may in fact be re-

sponsible for the anomalous scaling of large echoes

discussed later in section 3b and appendix C. Sampling

errors are estimated from the standard deviations, but

our data are so numerous that the 98% confidence in-

terval for individual data points tends to imply a level

of uncertainty on the order of the size of the symbols

used to plot the mean of the data, and hence is not

shown.

b. Further filtering

The averaged echo reflectivities are shown as a func-

tion of echo area in Fig. 1.

Below 0.25 km2 reflectivities increase with decreasing

areas. This runs counter to our intuition that large ech-

oes contain more liquid water content, develop a higher

number of large drops, and are more reflective, as is

evident for a . 1 km2. To better understand this ap-

parently anomalous behavior, Fig. 2 shows the re-

flectivity distribution of echoes in two area categories,

with the first, near 0.02 km2, being in the region of

anomalous reflectivities and the second, near 2 km2,

being in the range where reflectivities increase with echo

area.

The vertical dashed lines denote the average reflec-

tivity. The average intensity of the 0.02 km2 echoes is

higher than that of the 2 km2 echoes. Both distributions

are skewed toward more reflective echoes, but the tail is

more prominent for the 0.02 km2 echoes. This tail con-

sists of small but very reflective echoes; some are even

more reflective than echoes 100 times their area, which

leads to the curious feature (Fig. 1) wherein the average

reflectivity exhibits a local maximum at 1022 km2.

The reflectivity distribution of the smallest echoes is

not well sampled because most echoes are dimmer than

7 dBZ. Even though this fact can be used to explain why

the average reflectivity of the 0.02 km2 echoes is higher

than the 2 km2 echoes, it cannot explain why the

breadth of the intensity distribution of small echoes is

greater than that for large echoes (not shown), as a

truncated distribution should have a smaller standard

deviation. Because the intensity distribution of small

echoes appears to be unduly influenced by our filtering

procedure for Bragg echoes, they are excluded from

this analysis.

Finally, we note that there appears to be an anoma-

lous clustering of echoes near the radar as demonstrated

by the radial distribution of echoes (Fig. 3).

However, in the absence of island influences the lo-

cations should be unbiased. That the region within

30 km evinces an unusually large number of returns

suggests a possible near-field influence, either in the

character of the measurement or in the natural envi-

ronment. One possible cause of these returns is birds;

Barbuda is a natural refuge for frigate birds, and returns

from birds were often seen on the radar. While our

initial filtering procedure attempted to remove such

artifacts through the use of polarization or velocity

anomalies (see Nuijens et al. 2009 for a full discussion),

it may well be that such procedures were not entirely

successful. Because we do not fully understand the

anomalous returns, we simply consider only echoes lo-

cated at ranges farther than 30 km from the radar. So

doing yields a minimum echo area of about 0.1 km2. The

resulting data have the desirable property that the av-

erage echo intensity monotonically increases with echo

area.

FIG. 1. Reflectivity–area relationship plotted on a lognormal scale.

Data include echoes throughout the whole circular domain.
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c. The beam-filling effect

The procedure of recording and thresholding data on

a polar grid introduces further biases that this section

explores and for which we propose a remedy. The issue

has to do with the fact that small echoes may only appear

on a limited region or rings of the radar scan, hence bi-

asing the statistics of these echoes. In this section we

explore this issue and derive a normalization procedure

that attempts to account for such biases in the measured

data.

We use the phase ‘‘beam-filling effect’’ as a reference

to two related effects regarding the resolution limit of

the radar. One is the discreteness of the data field; pix-

ilation changes the original echo areas. The smaller an

echo is, the more pixilated it appears on a radar screen,

and the beam-filling effect becomes increasingly im-

portant. Another is that the natural (polar) coordinate

of the measurement results in pixels whose size depends

on the distance from the origin. A small echo situated far

away from the radar will be washed out in a pixel

average. For example, a 7-dBZ echo smaller than 0.25 km2

can never appear on the outermost annulus since the

tiniest unit of measurement there is 0.25 km2. Similarly

a 7-dBZ 0.125 km2 echo has only one-fourth of the

whole domain as its visible field. By equating the area of

a pixel at some distance r from the radar with the area of

an echo, it follows that the maximum perceivable range

rp at which an echo can be measured is simply

r
p
(a) 5

a

du dr
. (5)

An echo of a certain area, a, and the maximum per-

ceivable range rp can be single pixels whose size is equal

to a, or double a/2 pixels, or triple a/3 pixels, and so on.

Those a, a/2, a/3, . . . pixels locate at the distance rp, rp/2,

rp/3, . . . . Small echoes will preferentially be confined to

concentric rings whose outmost radius is rp, as sche-

matically illustrated in Fig. 4. At intermediate ranges

echoes will be aliased onto different sizes.

Such effects are apparent in the data. Figure 5 shows

the radial distribution of echoes belonging to three sizes:

0.13, 0.25, and 9.74 km2. The 0.13 km2 echoes have the

outermost perceivable radius of 74 km, in accord with

Eq. (5), the second perceivable annulus at 74/2 5 37 km

and the third at 74/3 5 25, which is beyond the designated

FIG. 2. Distribution of reflectivities for two areas (a) 0.02 and (b) 2 km2. The vertical dashed

line denotes the average reflectivities. Data include echoes throughout the whole circular

domain.

FIG. 3. Radial distribution of signals.
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inner radius of the domain, 30 km. Thus, all the 0.13 km2

echoes are clumped within either the narrow annular of

74 or 37 km as in Fig. 5a. The right annulus consists of

single-pixel echoes and the left annulus of double-pixel

echoes. The 0.25 km2 echoes have the outermost per-

ceivable radius of 147 km according to Eq. (5) (Fig. 5b).

The next consecutive rings are at 147/2 5 74 km, 147/3 5

49 km, and 147/4 5 37 km. The perceivable area is then

the four concentric rings. Figure 5c shows the distribu-

tion of a size big enough for echoes to be perceived

anywhere within the domain; the discreteness becomes

irrelevant.

This tendency of the domain to bias the sampling of

small echoes (by limiting the ranges at which they can be

measured) depends on the minimum and maximum ra-

dius of the domain, which we denote by Rmin (30 km)

and Rmax (150 km), respectively. The outermost per-

ceivable radius might be bigger than 150 km, in which

case the actual perceivable radius within the domain is

rp/k when k 5 (rp/Rmax). Similarly, the minimum annu-

lus is rp/j when j 5 (rp/Rmin). The perceivable area of an

echo Ap is proportional to the sum of the perimeters of

the rings:

A
p
(a) } 2p

r
p
(a)

k
1

r
p
(a)

k 1 1
1

r
p
(a)

k 1 2
1 . . . 1

r
p
(a)

j

" #
. (6)

If n*(a) is the total density of the measured echoes, the

new density, n(a), can be estimated through a normali-

zation procedure that accounts for these biases, namely

n(a) 5 n*(a)
S

p
(a)

A
p
(a)

. (7)

Note that Sp is called an isolation factor, which accounts

for the fact that even within the same perceivable area

large entities are less abundant since they require a

larger distance from the center of a neighboring echo to

become distinguishable as individual entities. If a por-

tion of one entity crosses over the other, they will be

registered as one larger entity. For a sake of simplicity,

FIG. 4. Schematic illustrating signals of the same size located at different radii and containing

different numbers of pixels.

FIG. 5. Radial distribution of echoes for three sizes: (a) 0.13, (b) 0.25, and (c) 9.74 km2.
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we let Sp } a, but since rp is proportional to a, Eq. (6) can

be rewritten as

n(a) }
n*(a)

1

k
1

1

k 1 1
1

1

k 1 2
1 . . . 1

1

j

. (8)

Equation (8) can be thought of as the result of a decon-

volution procedure designed to remove sampling arti-

facts that can be estimated for an ideal radar. It results in

an estimate of the number density for every echo area so

that our subsequent analysis is based on n rather than

the raw densities n*.

Figure 6 compares the distribution before and after

(8) is applied. The discrete behavior of n* in a small area

in Fig. 6a is tempered by this calibration and turns into

a more continuous distribution of n in Fig. 6b. That said,

some artifacts remain, perhaps related to the fact that

our radar is not ideal, and the signals that we sample are

not fixed-reflectivity targets, which was assumed in the

derivation of Eq. (8).

3. The echo area distribution and the scale break

The average echo area distribution for the entirety of

our dataset is plotted on a log–log scale and presented in

Fig. 7. Two regimes are evident. First is the tendency of

echoes smaller than ;10 km2 to follow a power-law

scaling with an exponent B ; 1.06. This is evident by the

correspondence between the data and the dashed line.

Arguably one finds a deviation from this scaling for the

very smallest echoes, but we believe this deviation re-

flects the uncorrected sampling biases discussed at the

end of section 2.

The average density of echoes larger than 10 km2

shows a sharper falloff with area. Relative to the small

echoes, large echoes are disproportionately rare. The

size demarcating the change in the scaling of small

(,10 km2) versus large (.10 km2) echoes is called the

scale break. In what follows we explore more closely the

nature of the break and the nature of the distribution of

large echoes.

a. The scale break

To more clearly identify the scale break and the na-

ture of the scaling above this break, we introduce the

compensated number density. Compensated densities

are the differences between the actual data and the

predictions, which in this case are the linear least squares

FIG. 6. The distribution (a) before the calibration, n*, and (b) after Eq. (8) is applied, n.

FIG. 7. Area distribution according to RICO’s SPolK data. The

dots are the average number densities among 312 samples. The

dashed line is the least squares fitting from 1 to 10 km2.
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fit of the area distribution from 1 to 10 km2 projected

beyond 10 km2. Mathematically the compensated den-

sity is c(a), in which n(a) 5 c(a) 3 ka2B, where k, the

proportional constant, and B are determined by a least

squares fit in log space between n and a for 1 , a ,

10 km2. Plotting our data in this manner more clearly

illustrates the disparity between the black dots and the

dashed line of Fig. 7.

If n(a) is already a power law of the form a2B, then

c(a) is unity and the plot will appear horizontal. This is

the case as shown in Fig. 8a, the plot between sizes and

compensated number density. The slope of the distri-

bution (the dashed line in Fig. 7) is leveled down into

a horizontal line in Fig. 8a. From 1 to 10 km2, the den-

sities align closely to the horizontal dashed line. This

reinforces our idea that the power law is a good ap-

proximation for echoes smaller than 10 km2.

The scale-free characteristic breaks down where the

area distribution starts to deviate from the original

power law: according to the figure, around 6 to 12 km2.

This scale break does not appear to be an artifact

caused by the finite domain size. Our numerical simu-

lations (not shown) demonstrate that artifacts emerging

from the representation of a power-law distribution on

a domain of our size are entirely negligible at the size

near the scale break. This is not surprising given the

three orders of magnitude difference between the size of

the domain, ;104 km2, and the size at which the break

appears, ;10 km2.

Further evidence in support of the break is presented

in Fig. 8b. The average echo intensity scales with the

area of the echo. Bigger echoes are generally brighter,

although the 7-dBZ threshold causes the intensity of the

smallest echoes to asymptote to a value near this bound.

The dashed line is a linear fit. It is only to guide the eyes;

we make no claim about the power-law relationship

between areas and reflectivities. The reason for drawing

the line is to emphasize the departure of large echoes

from the general trend of small ones. The scale break is

at the location of this departure, which is around 20 km2,

suggesting that the break demarcates not only a change

in the behavior of the echo area distribution but also the

intensity distribution. This break in the reflectivity plot

is about twice as big as the break in the compensated

density plot. It is possible that at the very threshold,

around 10 to 20 km2, reflectivities are less sensitive to

the changing regime than number densities. Given that

the break is both well resolved by the data and emerges

in different fields, we believe it is justified to identify it as

a real feature in the data rather than an artifact of our

analysis.

b. The area distribution of large echoes

For echoes larger than the scale break, the area dis-

tribution lacks the robustness of the distribution apparent

among echoes smaller than the break. The density–area

relationship for the large echoes changes from one

sample to the next, and a single function with fixed pa-

rameters is not suitable to describe distributions across

samples. One example of such variations is in the re-

lationship between the maximum echo area am within

a sample and the echo fraction f, which is the total area of

echoes divided by the domain area. It is mathematically

defined as p 3 (1502 2 302) km2. An environment with

high echo fraction is prone to produce a big am, as evinced

in Fig. 9.

The scatterplot compares the maximum area versus

the echo fractions; f was shown by Nuijens et al. (2009)

FIG. 8. Log–log plot between areas vs (a) compensated densities and (b) average re-

flectivities. The dashed line in (a) is the assumed power law. The dashed line in (b) is the least

squares linear fit.
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to scale with the environmental humidity. Moist envi-

ronments, which are well known to be more conducive

to convection, are also more conducive to producing

large echoes. This motivates us to look at the distribu-

tion conditioned on the echo fraction as a proxy for the

meteorological control on convection. Note that am is

not the only parameter that changes as we look from

sample to sample; even the distribution itself assumes

different shapes.

Figure 10 plots conditional compensated densities of

the large echoes; Fig. 10a shows samples with 0.001 ,

f , 0.003 and Fig. 10b samples with 0.06 , f , 0.1.

Since n(a) } c(a)a2B, c(a) in Fig. 10 encapsulates the

behavior of n(a). Not only do the distributions have

different upper bounds, but the shapes themselves are

also dissimilar as the number of echoes falls off more

rapidly with size for samples with smaller echo fractions

(i.e., samples that are statistically less humid). While

100 km2 echoes are rare among samples with relatively

low echo fractions (Fig. 10a), the number of 100 km2

echoes within samples with larger echo fractions is al-

most of the same order of magnitude as for the 10 km2

echoes (Fig. 10b). These results lead us to hypothesize

that the behavior of the large echoes is conditioned on

some environmental (hidden) factor and thus is influ-

enced by variations in this factor across our samples.

The actual shape of the distribution is a subject of

much debate. The c in Fig. 8a, and by implication n,

seems to relate to a in an exponential manner. Equally

possible is the existence of yet another scale break that

bookends another power-law regime. The shape that

best describes the distribution will be the result of the

composition among data with different distributions of

their own; thus, finding the best fit does not shed any

light on the physical phenomenon. A more practical is-

sue is how large echoes behave in the limiting cases, such

as when f approaches zero or one, and whether that can

teach us anything about the nature of the break.

4. Factors controlling the different statistics of
small and large echoes

We define the scale break as the point or size de-

marcating two regimes in the echo area distribution: one,

corresponding to small echoes, with relatively uniform

scaling and the other, corresponding to large echoes,

with scaling that varies as a function of some unknown

parameter. This section looks more deeply into how the

echo distributions differ across this break and as a func-

tion of the echo fraction, f, of a sample.

The differing statistics of large echoes may be the

result of some intrinsic properties of convection, either

microphysical or dynamical, that change once echoes

exceed a certain size. For instance, microphysically one

might argue that the echo area distribution is somehow

sensitive to the development of an equilibrium drop size

distribution associated with the development of a ma-

ture rain shaft, and that these large echoes then in-

fluence the overall echo fraction. Dynamically, perhaps

the development of cold pools with deep convection

qualitatively changes the underlying convective dy-

namics. On the other hand, given that our methodology

already answered the shortcomings in sampling and

observational strategy as best as possible, if the differ-

ences between the large and small echoes are not robust,

perhaps this simply tells us that the differing statistics of

the large echoes are a byproduct of the meteorological

environment (e.g., the signature of the trade inversion

suppressing large echoes).

To address this question, we formulated the null hy-

pothesis such that the area distribution beyond the

break forms a second power law, but one with a cutoff at

some maximum size. This hypothesis is principally one

of convenience, as it provides a basis for gaining insight

into some of the questions we have posed for ourselves.

Contrary to the evidence presented in Figs. 7 and 8a,

which argues that large echoes may be distributed ex-

ponentially, it can also be argued that the apparent ex-

ponential falloff in the power-law distribution for large

echoes is due to variations in am across the samples, as

illustrated with the help of Fig. 11.

Gray slant lines are the assumed power-law distribu-

tions of individual samples, and the dashed solid line is

n(a), the average distribution. (The actual height of the

FIG. 9. Maximum area (km2) vs the echo fraction f for each sample

on a log–log scale.
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slant gray lines is irrelevant in this schematic diagram.)

Only within regime A is the average consistent with the

underlying distribution of the samples, as each sample

spans the range of areas associated with this regime.

Inside regime B, because of fewer samples, the average

increasingly curves down as shown by the dashed line.

At the extreme, in regime C, even though individual

lines are straight there are so few samples that the av-

erage distribution falls well below the underlying dis-

tribution of the samples. While regime A and B are

distinguishable from one another at the point where the

average distribution starts to fall off from the power law,

the difference between regime B and C is merely a

matter of degree. The shape of the distribution inside

regime B and C is further discussed in appendix C.

Thus, we argue that the underlying average echo area

distribution, n(a), is

n(a) }
a�B1 , for a

0
, a , a

b

a�B2 , for a
b

, a , a
u

(
, (9)

where a0 is the smallest echo size, which after the filtering

in section 2 is 0.1 km2; ab is the location of the scale

break; and au is the smallest size among many am of the

averaged samples. Only under this size, au, is the dis-

tribution not biased by the sample-to-sample variability

in am (regime A in Fig. 11). Appendix C investigates the

distribution beyond au. The quantities B1 and B2 are the

exponents of the average distribution as measured by

the slope of the least squares fit between n and a on the

log–log scale.

From Fig. 10, the compensated density plot, and our

previous discussion, we learn that large echoes are rarer

in proportion among samples with small echo fraction,

f, as compared to those with large f. In other words, B2

is a function of f; B2 5 B2(f). In what follows we look

more quantitatively at how B1 and B2 vary with f and

argue that B1 is the limiting slope irrespective of echo

size. The suggestion is that small echoes have reached

their limiting distribution, and while large echoes do not

behave intrinsically differently, they are limited or mod-

ulated by external factors, leading to apparently different

statistics.

To evaluate how B1 and B2 depend on f, we estimate

these exponents by finding the power law that minimizes

the square error over finite area ranges. The least squares

fit is an intuitive (perhaps naive) way to parameterize the

distribution and is explored first. In that scenario, B1 is

computed by fitting a line to the data between 1 and

8 km2, and B2 is obtained by fitting a line to the data

between 20 and 100 km2. The lower bound of 1 km2 is

chosen so that the distribution is unaffected by possible

beam-filling effects. The choice of 100 km2 corresponds

FIG. 10. Compensated density of large echoes averaged among samples with (a) 0.001 , f ,

0.003 and (b) 0.06 , f , 0.1.

FIG. 11. Schematic diagram illustrating how data composition

affects the average of area distributions. The dashed line is the

average.
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to the fact that we only include samples whose largest

echoes am are greater than 100 km2. In other words,

100 km2 is au in Eq. (9). This ensures the distribution

remains a power law without the departures due to

compositing data whose maximum areas vary within the

range over which we construct the power-law fit. Since

the location of the scale break has not been determined

except that it is in the vicinity of 10 to 20 km2, the in-

termediate areas of 8 and 20 km2 are conservative choices

to avoid the influence of large echoes on the scaling of

small ones, and vice versa.

The result of such a procedure is shown in Fig. 12.

Crosses and squares trace B1 and B2, respectively.

In this case B1 remains relatively constant as B2 de-

creases and approaches B1. The uncertainty in the esti-

mate of B1 is smaller than the size of the plotting symbol

and thus not shown. Estimates of B2 have substantial

uncertainty except at echo fraction 0.01 to 0.05, where

the samples are most numerous. There appears to be

a tendency for B2 to approach B1 as f increases, al-

though we note that as f / 1 the concept of an echo

area distribution becomes meaningless.

The apparent convergence of the exponent of the

distribution for large echoes B2 to the exponent of the

distribution for small echoes B1 can be further illustrated

by comparing n(a) conditioned on f for two regimes,

one with a small echo fraction (0.001 , f , 0.003) and

the other with a big echo fraction (0.06 , f , 0.09).

Figure 13 compares these conditional distributions. The

solid and dashed lines are the least squares fitting of the

two power laws. The fits for small echoes (solid lines) are

similar for both conditional distributions, in contrast

to the fit for large echoes (dashed lines). As the echo

fraction increases, the exponent becomes less negative

and the break is less emphasized.

Similar behavior appears in reflectivity versus area

(Fig. 14). The intensity of large echoes in the composition

over samples with large f departs less from the increasing

tendency for small echoes than it does for the composi-

tion over samples with small f. Yet the sampling error in

the latter case is large given the paucity of large echoes at

weak echo fraction. That said, the general trend is clear.

The main advantage of the least squares fit is its in-

tuitiveness. However, the method is sensitive to a number

of issues: a binning strategy, the choice of bin width, the

locations of the first and last bins, and the bin centers.

These systematic errors can be equal to or more than

statistical ones (the error bars in Fig. 12). To circumvent

these issues, we employ an alternative method to explore

this question of the limiting distribution. This is called the

direct power-law method, and it yields a similar conclu-

sion to the least squares fit. A discussion of the direct

power-law method is included in appendix B.

Based on this we hypothesize a limiting echo area

distribution of the form n(a) } a�B1 of which the range

of applicability depends on the meteorological environ-

ment. This result is not trivial as there is a long list of

reasons, some of which we have already discussed, as to

why one might expect large echoes to evince different

statistics than small echoes.

5. Summary and discussion

The average area distribution of radar echoes smaller

than 10 km2 is well described by a power law of the form

n(a) } a�B1 , with a denoting area and B1 slightly greater

than one; B1 remains relatively invariant across sub-

samples conditioned on echo fraction, which earlier work

has shown to correlate well with meteorological vari-

ability. The regularity evident in the distribution of small

echoes should provide a basis for constraining models and

simulations. It can further supplement measurements by

devices incapable of resolving small echoes, such as are

characteristic of modern satellite remote sensing. Similar

exponents are apparent in analyses of cloud size distribu-

tions taken from visible imagery (Lovejoy and Mandelbrot

1985; Cahalan and Joseph 1989; Sengupta et al. 1990;

Benner and Curry 1998; Zhao and Di Girolamo 2007).

In their analysis of echo area distribution, Peters et al.

(2008) found a much sharper falloff, with B ’ 2. Given

the differences in the analysis (planar cuts in our case,

projected areas in theirs) and the differences in regimes

(shallow versus deep convection), it remains unclear how

substantive these differences are.

FIG. 12. Number of data and the exponents as measured by the

least squares fit plotted against the echo fraction. Crosses represent

B1 and squares B2.
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On scales larger than 10 km2 we find evidence of

a pronounced departure from the scaling at smaller

areas. The extent of the deviation and its character de-

pend, however, on the meteorological environment. In

convectively favorable situations, which we associate

with periods of high echo fraction, departures are less

pronounced. There is even some evidence that the

scaling of large echoes approaches that of small echoes

in the limit of high echo fractions; the two power laws

merge, and the break disappears altogether. In their

analysis of the rank of clusters as a function of size for

various values of the water vapor, Peters et al. (2008)

report similar behavior (albeit with a different power

law) where for more humid conditions the distribution

approaches a limiting power law. The similarity of these

findings is compounded by the observed correlation

between humidity and echo fraction in the RICO data

(Nuijens et al. 2009).

The break thus appears to reflect meteorological

controls on convection. An obvious cause of the break

and the one we propose here is the separation between

the moist, cool air near the surface and the dry, warm air

in the free troposphere as manifested across the trade

inversion. Around Barbuda at the time of the RICO

campaign, an inversion, or hydrolapse, was evident be-

tween 2 and 3 km. The lifting condensation level or the

FIG. 13. Area distribution for (a) a very dry regime when echo fractions are between 0.001

and 0.003 and (b) a very wet one when echo fractions are between 0.06 and 0.09. Unlike in

Fig. 7, here we assume the double power law. The solid and dashed gray lines are linear fitting

for small and big echoes, respectively. The exponents for the small and big echoes are re-

spectively (a) 21.18 and 23.04 and (b) 21.12 and 21.64.

FIG. 14. Reflectivity–area relationship for (a) a very dry regime when echo fractions are

between 0.001 and 0.009—note that this is wider than what we used for Fig. 13 since we need

more data—and (b) a very wet regime when echo fractions are between 0.06 and 0.09. Also

shown are the two least squares fits.
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base of cloud layer is around 700 m (Rauber et al. 2007).

The cloud layer height, h, is thus 1–2 km. Kuo et al.

(1993) showed that the aspect ratio of cloud height and

radius are about unity for almost all area ranges. (Al-

though we have yet to explore if this finding also holds

for the RICO data, we suspect it does.) If their result

holds true for any convective entities, this layer height

produces echoes whose area, ph2 ; 10 km2, is near the

size where we observe a break in the scaling. Hence, on

days with weak convection the presence of a trade in-

version effectively limits or inhibits the growth of clouds

beyond a certain size.

Figure 15a helps illustrate our proposal. Small echoes

contained within the cloud layer are scale free, following

the self-organized criticality framework developed by

Peters and colleagues. Unusually strong echoes that

penetrate this layer can be expected to diminish rapidly

in the presence of more stable and drier air. The physics

that govern big and small echoes are not the same, nor

are their area distributions. This is illustrated in the

schematic diagram as big echoes having a lighter shade

than small ones. The consistent physics of small echoes

led to their distribution being approximately power law.

The same might be true for large echoes, but that con-

clusion is less convincing.

As convection carries moisture away from the surface

and evaporates it to the upper level, the environment

moistens and the trade-wind layer deepens as illustrated

by arrows in Fig. 15b (Stevens 2007). The behavior of

echoes that penetrate the inversion start to depart less

from small echoes as illustrated by their having the same

shade. This is because the weaker inversion is less rele-

vant or, equivalently, the properties of the two air

masses are more similar; B2 takes on values approaching

B1 in relatively convective environments (i.e., during

periods when echo fractions are large).

Another way to consider this is that smaller B2 implies

the environment producing more large echoes. In sup-

pressed conditions, a shallow, moist layer and a pro-

nounced inversion impede the vertical development of

convection; these echoes are mostly small and shallow

(Fig. 15a). The moist cloud layer of Fig. 15b, on the other

FIG. 15. Schematic showing the behavior of echoes in (a) a dry case and (b) a moist case. In

(a), the shaded environment denotes moist air under the inversion; clear air above has no shade.

The difference in cloud shading denotes different behaviors and area distributions. Darker

shaded clouds are more abundant than lighter shaded ones. While darker shaded clouds are

small and can fit under the inversion, lighter shaded ones are big and can penetrate the in-

version. In (b), arrows indicate how moisture is deposited in the upper layer. The upper en-

vironment is now lightly shaded to indicate some amount of moisture. Big clouds become

darker since they now are more abundant and similar to small clouds as the result of deposited

moisture in the upper environment.
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hand, is conducive to deeper convection and bigger

echoes.

This conceptual model is supported by the vertical

structure of relative humidity as taken from the sound-

ing on 21 and 23 December. On 21 December (Fig. 16a),

the environment above 700 hPa is drier and the maxi-

mum echo on that day is about 295 km2. As more and

more moisture is deposited into the upper layer, even-

tually the sounding evolves to the state shown in Fig. 16b

where the humid layer around 700 hPa may support

deeper convection, irrespective of the thin dry layer near

750 hPa. The maximum echo on 23 December reached

1104 km2. Hence the humid environment is associated

with larger echoes.
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APPENDIX A

The Four-Connected Segmentation Method

Echoes can be segmented according to a four-connected

or an eight-connected method. Two cloudy pixels be-

long to the same echo in the four-connected method if

they are immediate neighbors either vertically or hori-

zontally, but not diagonally. The eight-connected method

allows diagonal neighbors to be of the same echo. Kuo

et al. (1993) showed that the two methods do not yield

substantially different area distributions. This study en-

gages the four-connected method.

The method is exemplified in Fig. A1. An initial

cloudy pixel marked ‘‘0’’ is selected. Its four neighbors

are examined in the clockwise direction from above,

right, below, and left. The first that has not been visited

is the next stop. The only major difference between our

algorithm and that of Kuo et al. (1993) is that theirs

employed a first-in-first-out waiting queue while ours

uses a last-in-first-out. The pixels are examined and

visited until the code finds a pixel with no unvisited

neighboring pixel. We trace back our route to the first

echo with an unvisited neighboring pixel. The process

continues over again until no pixel has an unvisited

neighboring pixel. That is when the entire echo has all

been visited. The numbers in Fig. A1, from 1 to 5, mark

five sequential stop spots where we retrace our steps.

The end point, 6, is the same as the beginning. Since

we end at the beginning, this process should be self-

checked, and the last-in-first-out algorithm should not

FIG. 16. Vertical structure of relative humidity as taken from the soundings on (a) 21 and

(b) 23 December.

FIG. A1. Example of how segmentation is done. Gray pixels are

cloudy; white is the background.
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yield different result from the first-in-first-out. Kuo et al.

(1993) and Wielicki and Welch (1986) discuss the seg-

mentation algorithm in more detail.

APPENDIX B

The Direct Power-Law Method

Following Zhao and Di Girolamo (2007), we explore

the behavior of scaling exponents as estimated by what

they call the direct power-law method. It is motivated by

the question ‘‘What can we learn from a single sample?’’

The name refers to how this method already assumes

a power law, and the exponent is directly extracted

without actually fitting or drawing any line.

The number density of echo within a single sample is

assumed to be the double power law:

m(a) }
a�b1 , for a

0
, a , a

b

a�b2 , for a
b

, a , a
m

(
, (B1)

where b1 and b2 are the hidden exponents, hidden be-

cause the statistic of one sample is too poor. The dis-

tribution of a sample, m(a), is different from the average

distribution, n(a). Specifically, n is the average of m over

312 samples. We want to stress that Eq. (B1) is only an

assumption. If we plot the distribution of a single sam-

ple, it will hardly look like any power law because of the

poor statistics and not having enough data in one sam-

ple. It is not necessary for b to be the same as B. Only

when the average does not suffer from the effect of data

composition do the two confirm each another.

For a distribution following a power law, the average

area, A, and the number of echoes, N, between two

limits, a1 and a2, can be written as

A 5
1

N

k

2� b
(a2�b

2 �a2�b
1 ), N 5

k

1� b
(a1�b

2 �a1�b
1 ),

(B2)

so long as a1 and a2 lie within the same power-law re-

gime. Unlike the least squares fit method, the direct

power law is based on the distribution of individual

sample, m(a) not n(a). Substituting N into A yields an

implicit equation for b,

A� 1� b

2� b

a2�b
2 � a2�b

1

a1�b
2 � a1�b

1

5 0. (B3)

Choosing appropriate a1,2 and solving for b1 (crosses)

and b2 (squares) numerically for every sample yields the

results shown in Fig. B1 along with the regression lines

representing the least squares estimation of these two

exponents.

The small-scale exponent, b1, takes on values between

0.8 and 1.6 and exhibits no clear dependence on the echo

fraction. The large-scale exponent, b2, however, appears

to decrease with f. Moreover, the regression line of b1 is

effectively constant and similar to the tendency line of

B1 in Fig. 12, while b2 and B2 appear to approach b1 and

B1 respectively as f increases. Hence, the two methods,

the least squares fit and the direct power law, yield re-

sults that can be consistently interpreted.

APPENDIX C

The Departure from the Power Law

One possible cause for the exponential area distribu-

tion in Fig. 8a is our averaging across samples with dif-

ferent maximum areas, as demonstrated by Fig. 11. To

the extent that our idea is correct, we should be able

to mitigate the effects of meteorological variability by

picking only samples whose maximum echo areas, am,

are greater than some threshold.

Figure C1a shows d(a), the deviations of n(a) from the

assumed second power law. Here n(a) } d(a)a�B2 , in

which B2 is determined by fitting the line from 20 to

100 km2. The deviated or the compensated spectra of

the entire samples already begin to fall off from the

power-law approximation at an area as small as 100 km2.

This suggests that the majority of samples have a maxi-

mum area around 100 km2. On the other hand, Fig. C1b

shows the compensated spectra averaged among samples

with am greater than 103 km2. These compensated spectra

FIG. B1. Values of b1 (crosses) and b2 (squares) plotted vs the echo

fraction. Regression lines fitted to the data are shown.
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do not significantly deviate from the power law until after

1000 km2, the area at which we condition the samples.

If one assumes the distribution of all individual sam-

ples, m(a), to be a power law of the same exponent, b2,

and the distribution of the maximum areas, am, to be

lognormal, then

H(a
m

) 5
1

X
ffiffiffiffiffiffi
2p
p exp �

log2(a
m

/a
m

)

2X 2

" #
, (C1)

with am being the average maximum size and X the

standard deviation. Both am and X can be directly

measured from all 312 samples; their values are 316 km2

and 0.51, respectively. For any size a, the number of

samples whose am . a or samples that contain an echo of

size a is

l(a) 5 L 3 erfc
log(a/a

m
)

X
ffiffiffi
2
p

� �
, (C2)

where L is 312, the total number of samples, and erfc is

the complementary error function. Within region A of

Fig. 11, a� am, so erfc 5 1 and l(a) 5 L; that is, every

sample contains the echoes of size a. As we move closer

to am, we enter region B. There are fewer and fewer days

that contribute to echoes of that size, and the value of

erfc decreases. When a 5 a
m

, only half the samples are

included. In region C, as a becomes larger, erfc ap-

proaches zero and eventually there is no echo—not in

any sample—big enough to fit into that size.

The area distribution of echoes bigger than the scale

break from a single sample is

m(a) }
a�b2 a

b
, a , a

m

0 a . a
m

(
, (C3)

with the proportional constant varying from sample

to sample. Note that this equation is the second half of

Eq. (B1) in appendix B with an upper constraint. The

average size density of the composited data is therefore

n(a) 5
l(a)m(a)

L
} a�b2 erfc

log(a/a
m

)

X
ffiffiffi
2
p

� �
. (C4)

We are interested in the compensated density, d(a),

according to n(a) 5 d(a)a�B2 . Note that B2 is not the

same as b2 but depends on the range over which we fit

the distribution because the actual number densities curve

down. This is as illustrated in Fig. C2.

The gray, solid, slanted line is the hidden size distribution

of each sample. Because am varies according to Eq. (C1),

FIG. C1. Compensated densities of large echoes (a) for all samples and (b) on a condition that

the maximum areas are only above 1000 km2. The dotted line is the prediction based on

Eq. (C5).

FIG. C2. Schematic showing how B2 depends on the range over

which we perform the least squares fit.
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the composited distribution appears curved down from

the actual distribution as shown by the plus signs. If we

perform a least squares fit up to the vertical marking line 1,

the fit will appear as the slant line 1. If the fit is performed

up to 2 and 3, the result will be slant lines 2 and 3. With

these fitting exponents, 2B2 is always more negative than

the actual exponent of the distribution, 2b2, and the fur-

ther we fit the distribution, the smaller is the exponent.

By fitting the distribution up to 100 km2, we un-

intentionally assume there is no missing sample under

100 km2 so the compensated density is the unity; the

distribution under 100 km2 is of the form n(a) } a�B2 ,

and d(a) is one. The distribution above 100 km2 depends

on how many data are missing from those that contain

the echoes of the size, 100 km2, which is m(a) 2 m(100).

Thus, the compensated density is

d(a; X , a
m

) 5

1, for a , 100 km2

erfc
log(a/a

m
)

X
ffiffiffi
2
p

� �
� erfc

log(100/a
m

)

X
ffiffiffi
2
p

� �
, for a . 100 km2

8<
: , (C5)

where d(a) is plotted on a log–log scale. The dotted line in

Fig. C1a is in accord with Eq. (C5), while the dots are the

true compensated densities. The line is supposed to be

a theoretical counterpart of the dots, and their shapes are

in rough agreement. This agreement supports our analysis

here of the departure from the power law of big echoes.

REFERENCES

Benner, T. C., and J. A. Curry, 1998: Characteristics of small

tropical cumulus clouds and their impact on the environment.

J. Geophys. Res., 103 (D22), 28 753–28 767.

Cahalan, R. F., and H. J. Joseph, 1989: Fractal statistics of cloud

fields. Mon. Wea. Rev., 117, 261–272.

Doneaud, A. A., S. Ionescu-Niscu, D. L. Priegnitz, and P. L. Smith,

1984: The area-time integral as an indicator for convective rain

volumes. J. Climate Appl. Meteor., 23, 555–561.

Gutenberg, B., and C. F. Richter, 1944: Frequency of earthquakes

in California. Bull. Seismol. Soc. Amer., 34, 185–188.

Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness

and the incidence of precipitation: Early results from CloudSat.

Geophys. Res. Lett., 34, L09811, doi:10.1029/2007GL029335.

Holder, C. T., S. E. Yuter, A. H. Sobel, and A. R. Aiyyer, 2008: The

mesoscale characteristics of tropical oceanic precipitation

during Kelvin and mixed Rossby–gravity wave events. Mon.

Wea. Rev., 136, 3446–3464.

Kuo, K., R. M. Welch, R. C. Weger, M. A. Engelstad, and

S. K. Sengupta, 1993: The three-dimensional structure of cu-

mulus clouds over the ocean. 1. Structural analysis. J. Geo-

phys. Res., 98 (D11), 20 685–20 711.

Lovejoy, S., and B. B. Mandelbrot, 1985: Fractal properties of rain,

and a fractal model. Tellus, 37, 209–232.

Luo, Z., and C. Liu, 2007: A validation of the fractal dimension of

cloud boundaries. Geophys. Res. Lett., 34, L03808, doi:10.1029/

2006GL028472.

Neggers, R. A. J., H. J. J. Jonker, and A. P. Siebesma, 2003: Size

statistics of cumulus cloud populations in large-eddy simula-

tion. J. Atmos. Sci., 60, 1060–1074.

Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment

of precipitating shallow cumulus. J. Atmos. Sci., 66, 1962–1979.

Peters, O., and K. Christensen, 2002: Rain: Relaxations in the sky.

Phys. Rev. E, 66, 036120, doi:10.1103/PhysRevE.66.036120.

——, and ——, 2005: Rain viewed as relaxational events. J. Hy-

drol., 328, 46–55.

——, and J. D. Neelin, 2006: Critical phenomena in atmospheric

precipitation. Nat. Phys., 2, 393–396.

——, C. Hertlein, and K. Christensen, 2002: A complexity view of

rainfall. Phys. Rev. Lett., 88, 018701, doi:10.1103/PhysRevLett.88.

018701.

——, J. D. Neelin, and S. W. Nesbitt, 2008: Mesoscale convec-

tive systems and critical clusters. J. Atmos. Sci., 66, 2913–

2924.

Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein,

and S. A. Rutledge, 2002: TRMM observations of intraseasonal

variability in convective regimes over the Amazon. J. Climate,

15, 1278–1294.

Petty, G. W., 1999: Prevalence of precipitation from warm-topped

clouds over eastern Asia and the western Pacific. J. Climate,

12, 220–229.

Rauber, M. R., and Coauthors, 2007: Rain in shallow cumulus over

the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88,

1912–1928.

Sengupta, S. K., M. S. Navar, D. W. Chen, R. M. Welch, and

T. A. Berendes, 1990: Cumulus cloud field morphology and

spatial patterns derived from high spatial resolution Landsat

imagery. J. Appl. Meteor., 29, 1245–1267.

Short, D. A., and K. Nakamura, 2000: TRMM radar observations

of shallow precipitation over the tropical oceans. J. Climate,

13, 4107–4124.

Snodgrass, E. R., L. Di Girolamo, and R. M. Rauber, 2009: Pre-

cipitation characteristic of trade wind clouds during RICO de-

rived from radar, satellite, and aircraft measurements. J. Appl.

Meteor., 48, 464–483.

Stevens, B., 2007: On the growth of layers of nonprecipitating cu-

mulus convection. J. Atmos. Sci., 64, 2916–2931.

Telesca, L., G. Colangelo, V. Lapenna, and M. Macchiato, 2004:

On the scaling behavior of rain event sequence recorded in

Basilicata region (southern Italy). J. Hydrol., 296, 234–240.

Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud field

properties derived using Landsat satellite data. J. Appl. Me-

teor., 25, 261–276.

Zhao, G., and L. Di Girolamo, 2007: Statistics on the macro-

physical properties of trade wind cumuli over the tropical

western Atlantic. J. Geophys. Res., 112, D10204, doi:10.1029/

2006JD007371.

804 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67

Brought to you by provisional account | Unauthenticated | Downloaded 09/30/22 01:37 PM UTC


